IS YOUR INNER EYE

YOUR INNER

Behavioural & Pilot EEG Correlates of Cognitive Mapping

COMPASS?

Background

Dr. Saumya Singh, Prof. Dr. Vinay Singh

Department of Physiology

Baba Raghav Das Medical College

Research Question

How does visual imagery vividness relate to spatial memory & theta oscillations?

Spatial memory and visual imagery depend on the hippocampus and parietal cortex, key regions for navigation and cognitive mapping.

Individual differences in

imagery vividness may
influence navigational ability and
spatial memory performance.
hese abilities are impaired in certain
disorders.

Theta-band oscillations

help in spatial navigation, the consolidation of memory and recall mechanisms.

Objectives

- Assess imagery vividness (VVIQ)
- Evaluate spatial sense (SBSOD)
- Correlate imagery
 & spatial memory.

Why This Study?

Need

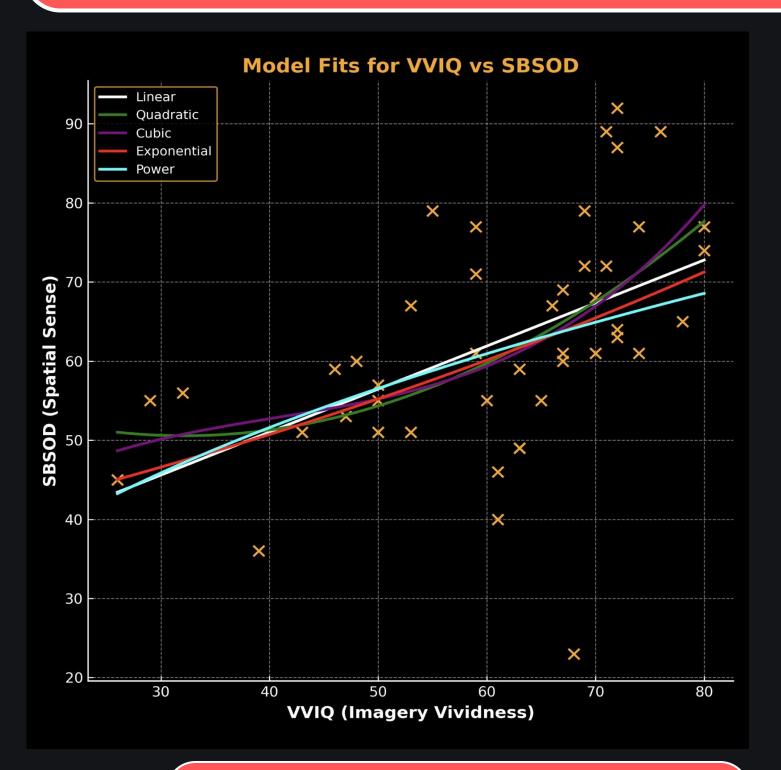
Individual differences in imagery and their link to spatial cognition and theta oscillations remain poorly understood, despite relevance for navigation, memory, and neurological disorders like Alzheimer's and Epilepsy.

Novelty

This study uniquely combines VVIQ and SBSOD with reference to theta activity, a link under explored in healthy adults.

How Are We Approaching This?

Visual Imagery & Spatial Memory:


Behavioural Measures

Vividness of Visual Imagery and Santa Barbara Scale of Direction. Data Analysis
Correlation and
Regression

analysis.

Spatial Task & EEG theta amplitude measures are planned.

Result & Takeaways

Result

- Linear model best fits the data (β = 0.54, p < 0.0004, Adjusted R² = 0.24).
- Other models did not improve prediction

What Does It Mean?

- Analyses showed that visual imagery vividness is linearly
 associated with spatial orientation ability in healthy adults, with
 stronger imagery linked to better orientation.
- While our data is behavioural, this relationship is consistent with prior evidence that hippocampal–parietal networks and theta oscillations may underlie both imagery and navigation.
- Future analyses will extend these findings by incorporating EEG measures of theta activity during imagery and navigation tasks.
 - Modest sample size.
 - Population isn't diverse.
 - Self-report questionnaires only.
 - Cross-sectional design limits causal inference.

- Planned EEG studies.
- Task-based measures that were planned.
- Correlation and regression analysis of the parameters.

What Are The Limits?

What's Next?

How Can This Be Applied?

Clinical (Patient-focused)

- Early detection: EEG markers reveal subtle cognitive changes.
- Rehabilitation: Imagery-based training for Alzheimer's, Temporal Lobe Epilepsy, stroke.
- Network support: Boosts hippocampal-parietal connections (like motor imagery in stroke rehab.)

- Investigate neural mechanisms: mental imagery ↔ theta/alpha oscillations.
- Interventions: Test methods to enhance spatial memory.
- Biomarkers: Validate EEG for early cognitive decline.
- Populations: Apply tasks to larger, diverse groups.

Societal / Technological (Tools &

Accessibility)

- Navigation aids: Personalized apps (visual or verbal cues).
- Virtual & augmented reality training & educational platforms: Virtual mazes, route-finding.
- Educational platforms: Imagery-based exercises for schools or training programs .

Technological / Innovative Research • Artificial intelligence: Uses data to predict

- Artificial intelligence: Uses data to predict imagery or spatial skills and tailor training.
- Brain-computer interfaces: Let mental images control devices or virtual tasks.
- Robotics: Robots that help people navigate or do cognitive exercises based on imagery research.

FROM THE BRAIN'S INNER COMPASS TO OUTER REALITY — GUIDING IMAGERY TODAY INTO TOMORROW'S CLINIC, CLASSROOM, AND TECHNOLOGY.

