EFFECT OF GLYCOSYLATED HAEMOGLOBIN ON EARLY NEUROLOGICAL DETERIORATION IN ACUTE ISCHEMIC STROKE PATIENTS TREATED WITH INTRAVENOUS THROMBOLYSIS AND FUNCTIONAL OUTCOME IN A TERTIARY CARE CENTRE

Dr Anantha Padmanabhan A (Senior Resident), Dr Ram Mohan K (Professor) , Dr Chithra P (Professor)

Department of Neurology , Government Medical College , Thiruvananthapuram

AIM & OBJECTIVES

- To evaluate the association between baseline HbA1c levels and Early Neurological Deterioration (END) in acute ischemic stroke patients treated with intravenous thrombolysis, as assessed by National Institute of Health Stroke Scale (NIHSS).
- To compare the functional outcome of diabetic and non-diabetic acute ischemic stroke patients treated with intravenous thrombolysis at 3 months of follow up using Modified Rankin Scale (mRS)
- To determine a HbA1c cutoff for predicting Early Neurological deterioration using an ROC curve

MATERIALS & METHODS

STUDY DESIGN: Prospective Cohort study

STUDY SETTING: Department of neurology, Government Medical College Thiruvananthapuram, Kerala STUDY POPULATION: Acute ischemic stroke patients underwent intravenous thrombolysis in the department of Neurology, Government Medical College Thiruvananthapuram, Kerala.

INCLUSION CRITERIA:

- Age above 18 years
- Patients with a modified Rankin Scale (mRS) score ≤1 prior to stroke onset
 No further endovascular treatment like

mechanical thrombectomy or stenting

within 24 hours

EXCLUSION CRITERIA:

- Diagnosis of malignant brain tumour
- Diagnosis of malignant brain tumor.
 Severe hepatic or renal dysfunction.
- Severe systemic diseasesThose who are not willing to give consent

TUDY DEDOID

 STUDY PEROID
 One Year from the date of getting Institutional Ethics Committee clearance. Sample Size

Primary outcome Expected proportions – Diabetics 52.6% vs Non-diabetics 20%

Assumptions: $\alpha = 0.05$, Power = 90% Calculated sample size: 80

DM. AF, CAD, smoking, alcoholism)

Data Collection Baseline: Demographics, comorbidities (HTN,

Stroke severity: NIHSS at admission & 72h Biochemical: HbA1c, LDL cholesterol Classification: TOAST criteria, NIHSS, mRS

Definitions: END

END: NIHSS >1 within 72h

Functional outcome: mRS

Diabetes defined by history/medications

Functional outcome: mRS at 90days

→ Good (0–1), Poor (≥2)

MATERIALS & METHODS

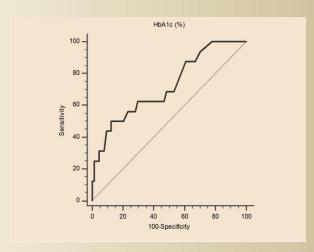
Data Analysis

Descriptive statistics: Mean, SD, median, IQR for baseline comparisons

Associations: χ^2 test for categorical variables (e.g., comorbidities, stroke subtypes)

Predictors: Multivariate binary logistic regression → adjusted OR & 95% CI

HbA1c utility: ROC curve → AUC, optimal cutoff, sensitivity & specificity


Significance: p < 0.05 considered significant

Software: JAMOVI 2.6.26

RESULTS

- Mean HbA1c: Diabetics 9.3 ± 1.4% vs Non-diabetics 5.2 ± 0.3%
- Baseline NIHSS: mean ~11.0 vs 10.7 (no significant difference)
- END incidence: 16/80 (20%) experienced END within 72 hr out of which 9 were diabetics and 7 non diabetes
- 90-day outcome (mRS): Good outcome (mRS 0-1): 62.5% non-diabetics vs 37.5% diabetics (p = 0.025)
- Predictors of poor 90-day outcome (multivariate): Age >60 (aOR 4.02, p=0.013) ,SICH post thrombolysis(aOR-3.1,p=.006) HbA1c >9.5% (aOR 21.96, p=0.005)
- Predictors of END (multivariate): HbA1c (aOR 8.4, p=0.009); Dyslipidemia (aOR 6.5, p=0.023); baseline high BP showed a protective effect (aOR 0.06, p=0.024)
- ROC (HbA1c → END): AUC 0.719; cutoff >9.5% → Sens 50%, Spec 87.5%, NPV 87.5%

DIAGRAMS

95% Confidence interval	0.607 to 0.814
Youden index J	0.375
Optimum cut off	>9.5
Sensitivity	50
Specificity	87.5
+LR	4
-LR	0.57
PPV	50
NPV	87.5

DIAGRAMS

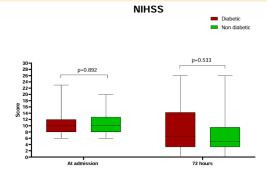


Figure 7: Box plot diagram describing NIHSS score.

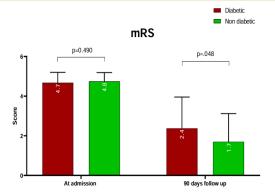


Figure 6: Bar diagram depicting mean mRS at admission and 90 days of follow-up in diabetic and non-diabetic patients

CONCLUSION

- This prospective cohort of 80 thrombolysed AIS patients (40 DM/40 non-DM) found that chronic hyperglycaemia (HbA1c>9.5%) sharply increased odds of early deterioration and poor 90-day recovery even after adjusting for age, ICH and other variables.
- PElevated HbA1c is a powerful independent predictor of both Early Neurological Deterioration (END) and poor 90-day outcome after IV thrombolysis in AIS.
- HbA1c >9.5% is particularly associated with adverse outcomes.
- Routine HbA1c screening in acute stroke may help risk stratification and guide prognostication.
- Findings highlight the importance of longterm glycaemic control in improving stroke recovery.

REFERENCES

- Lin Han, Zhangyan Hou, Mingwei Ma, Dongxue Ding, Dapeng Wang, Qi Fang- Impact of glycosylated haemoglobin on early neurological deterioration in acute mild ischemic stroke patients treated with intravenous thrombolysis 2023 Jan 12:14:1073267.doi: 10.3389/fnaqi.2022.107326716
- Role of HbA1c at Admission on Severity and Functional Outcome of Ischemic Stroke in Patients with Diabetes Mellitus January 2016 Journal of Neurology & Neurophysiology 7(3) DOI:10.4172/2155-9562.100037717.
- Wang L, Cheng Q, Huang YW, et al. HbA1c ≥7% predicts poor outcome in acute ischemic stroke: findings from Frontiers in Neurology. 2022;13:999536. DOI: 10.3389/fneur.2022.999536
- Xiong X, Chen M, Li S, et al. Diabetes status modifies thrombolysis outcomes in ischemic stroke. Neurological Sciences. 2021;42(2):545–552. DOI: 10.1007/s10072-020-04774-1
- Diabetes, hyperglycaemia, and acute ischaemic stroke Luitse, Merel JA et al. The Lancet Neurology, Volume 11, Issue 3, 261 – 271